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Abstract

Some types of nonlinear oscillators, for which the frequency of excitation is stochastic, are investigated.
The paper consists of two parts. In the first part equations of motion are linearized. With the aid of
stochastic averaging differential equations for the mean and variance of the process are obtained and
integrated numerically. This approach is applicable for weakly nonlinear oscillators.
The case of strong nonlinearity is considered in the second part. Making use of computer simulation, a

number of stochastic realizations of the process are computed. The stochastic process is characterized by
the mean and standard deviation of these realizations. Calculations have been carried out for the Duffing,
Ueda and van der Pol equations and for forced vibrations of a pendulum. These calculations show that if
attractors exist then the deterministic vibrations (which may be chaotic) turn regular by adding noise and
the motion terminates in a stable fixed point or on a limit cycle.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear stochastic vibrations are investigated in many textbooks and papers (see e.g. [1–3]).
New approaches and methods of solution are often tested on well-known oscillators. For this
purpose, the Duffing model is used in several papers, such as Refs. [4–15].
see front matter r 2005 Elsevier Ltd. All rights reserved.
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www.elsevier.com/locate/jsvi


ARTICLE IN PRESS
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The Duffing equation has the form

d2x

dt2
þ p

dx

dt
þ qx þ rx3 ¼ s cos ot þ f ðtÞ. (1)

In most studies p, q, r, s, o are regarded as constants. For vibrating systems the dissipation
coefficient p must be positive. If q40; r40 an oscillator with hardening stiffness is obtained, this
case is discussed in Refs. [4,5,7,10,12,13,15]. The other case, where q and r have opposite signs, is
analysed in Refs. [6,8,11]. In Refs. [9,16] the variable q is taken in the form

q ¼ q0½1þ g cos ot þ d sin ot�, (2)

where q0; g; d are constants.
Different ways of introducing noise into the nonlinear system are distinguished below:
(i) Additional noise: Here it is assumed that f ðtÞ ¼ axðtÞ: In most papers x is a zero mean

Gaussian noise. In Ref. [14] Poisson noise excitation is assumed.
(ii) Multiplicative noise: The coefficients in Eq. (1) are random.
(iii) Bounded noise: In this case the frequency and the phase of excitation are random [4,5,11,15].

In Ref. [11] the frequency term is taken in the form f ðtÞ ¼ m sinðOt þ cÞ; c ¼ sBðtÞ þ G; where m;
O; s are positive constants, BðtÞ is a unit Wiener process and G a random variable. In Ref. [15] a
similar approach can be found.
In Refs. [4,5] the noise is modelled as the solution of the equation

d2X

dt2
þ b

dX

dt
þ n2X ¼ n

ffiffiffi
b

p
W ðtÞ, (3)

where b; n are deterministic constants and W ðtÞ means Gaussian white noise.
Some papers are concerned with other nonlinear equations, such as the stochastic van der Pol

equation investigated in Refs. [14,17]; the forced motion of a pendulum is discussed in Refs.
[18,19].
Different methods of solution have been applied. According to the conventional approach

[4–6,12,14,17,18] Eq. (1) is linearized with the aid of equivalent linearization techniques. The
stochastic averaging method is a powerful approximate technique for the prediction of nonlinear
oscillator response. In Refs. [6,11,16] the Melnikov method for calculating the homoclinic
threshold is applied. The pseudoforce theory is developed in Ref. [7]. In Ref. [9] the method of
multiple scales is used. A wavelet-based solution is proposed in Ref. [10].
Computer simulation is used in several papers since the methods for solving stochastic

nonlinear equations are in most cases rather complicated. For this purpose the Euler scheme [8] or
the fourth-order Runge–Kutta method [4,5,10,13,16] is applied. In some papers the Monte Carlo
simulation is used as well.
The relationship between the chaotic and stochastic motion is quite interesting. It is well known

that the stochastic excitation may bring the regular motion into the chaotic state (stochastic
chaos). Here it is appropriate to cite Szemplińska–Stupnicka [20], who raised the question: Can
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chaotic motion be interpreted as nonstationary free vibration with randomly modulated
amplitude and phase? On the contrary, there are some papers in which it is demonstrated that
the noise effect may stabilize the system [8,15] and too strong a noise destroys the signal [17]. The
transition from deterministic responses to purely random results is discussed in Ref. [6]. From
here it follows that the relation between deterministic chaos and stochastic vibrations, if any, is
not well understood.
The excitation frequency o is for physical reasons not strictly a constant, but carries some small

fluctuations. For this reason o can be considered a narrow-band random variable. This case for
the Duffing attractor was discussed by Lepik [21]. It turned out that by adding noise to the
frequency o the initially chaotic motion becomes regular and is terminated in one of the focuses.
The authors think that is an interesting result. Unfortunately they have not found any other
papers on this topic. With the view of providing some physical insights into this problem the
present paper is dedicated to the analysis of nonlinear equations with random frequency of
excitation.
The paper consists of two different parts. In Section 3 the weakly nonlinear equations are

considered. In the second part (Sections 4–7) the computer simulation method is applied for
analysing the response of some strongly nonlinear oscillators.
2. Problem statement

Consider nonlinear differential equation

€x þ gðt; x; _xÞ ¼ s cos ot; 0ptpT (4)

with the boundary conditions xð0Þ ¼ x0; _xð0Þ ¼ _x0: Dots stand for time derivatives, g is a
prescribed deterministic function, s, x0; _x0 are deterministic constants. The quantity o has the
form

o ¼ o0½1þ axðtÞ�, (5)

where o0 and 0pap1 are constants; xðtÞ represents a Gaussian white noise with zero mean and
standard deviation s ¼ 1: The coefficient a characterizes the noise intensity (for a ¼ 0 the motion
is deterministic). The aim is to integrate Eq. (4) and explore the effect of randomness to the
nonlinear vibrations.
For interpreting the achieved results, the knowledge of the fixed points of system (4) and their

type is useful. The type of the fixed points is determined for the linearized and unperturbed
system. In the case of a nonlinear system it is expedient to make use of the Hartman–Grobman
theorem [22] according to which the fixed points of the linear system maintain their type also in
the case of the corresponding nonlinear system (with the exception of the centres and degenerated
points for which the character of the fixed points may change).
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3. Solution of the linearized equation

Consider again (4); the corresponding deterministic equation has the form

€xD þ gðt; xD; _xDÞ ¼ s cos o0t. (6)

Next the noise-induced deviation dx ¼ x � xD is introduced. In view of (1, 4)

d €x þ gðt;x; _xÞ � gðt; xD; _xDÞ ¼ sðcos ot � cos o0tÞ, (7)

where the stochastic variable o is defined according to Eq. (5).
To be more specific, in this section the Duffing equation gðt; x; _xÞ ¼ p _x þ qx þ rx3 is considered.

Oscillators with weak nonlinearity for which x3 � x3
D þ 3x2

Ddx are discussed. For this case (7) can
be presented in the form

d _x ¼ dy,

d _y ¼ � pdy � qdx � 3rx2
Ddx þ sfðt; xÞ, ð8Þ

where fðt; xÞ ¼ cos ot � cos o0t:
Expanding the function fðt; xÞ into trigonometric series, we obtain

fðt; xÞ ¼ cos o0t½�
1
2
ðao0txÞ

2
þ 1

24
ðao0txÞ

4
� 	 	 	�

� sin o0t½ao0tx� 1
6
ðao0txÞ

3
þ 	 	 	�. ð9Þ

Since x is a normally distributed random variable, it has the moments (symbol E denotes the
mean):

EðxÞ ¼ 0; Eðx2Þ ¼ 1; Eðx3Þ ¼ 0; Eðx4Þ ¼ 3.

In view of these equalities the mean of the function f is

E½fðt; xÞ� ¼ �1
2
ðao0tÞ

2 cos o0t½1�
1
4
ðao0tÞ

2
þ 	 	 	�. (10)

Stochastic averaging of Eq. (8) gives

Eðd _xÞ ¼ EðdyÞ,

Eðd _yÞ ¼ � pEðdyÞ � ðq þ 3rx2
DÞEðdxÞ þ sEðfÞ. ð11Þ

Introducing the second-order moments

Mx ¼ E½ðdxÞ2�; Mxy ¼ EðdxdyÞ; My ¼ E½ðdyÞ2� (12)
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Fig. 1. Weakly nonlinear Duffing equation for p ¼ 0:05; q ¼ �1; r ¼ 0:2; s ¼ 1; o0 ¼ 0:05; x0 ¼ 0; _x0 ¼ 1; (a) time
history of deterministic vibrations, (b) expectation of the noise-induced deviation EðdxÞ; (c) the variance DðxÞ: ——

a ¼ 0:1; – – – a ¼ 0:15; 2 	 2 	 2a ¼ 0:2:
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and taking into account Eq. (11), the following system of equations is obtained:

_Mx ¼ 2Mxy,

_Mxy ¼ �ðq þ 3rx2
DÞMx � pMxy þ My þ sEðdxÞEðfÞ, (13)

_My ¼ �2ðq þ 3rx2
DÞMxy � 2pMy þ 2sEðdyÞEðfÞ.

This system can be integrated according to the following algorithm.
Step 1: Solve Eq. (6) for boundary conditions xDð0Þ ¼ x0; yDð0Þ ¼ _x0:
Step 2: Calculate EðfÞ from Eq. (10).
Step 3: Integrate Eq. (11) for boundary conditions E½dxð0Þ� ¼ E½dyð0Þ� ¼ 0:
Step 4: Integrate Eq. (13) for Mxð0Þ ¼ Mxyð0Þ ¼ Myð0Þ ¼ 0:
Step 5: Calculate

EðxÞ ¼ xD þ EðdxÞ,

DðxÞ ¼ E½ðxD þ dx � EðdxÞÞ2� ¼ E½ðdxÞ2� � ½EðdxÞ�2. ð14Þ
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Ü. Lepik, H. Hein / Journal of Sound and Vibration 288 (2005) 275–292280
Knowing the mean EðxÞ and variance DðxÞ over the time interval t 2 ½0;T � it is usually sufficient
to characterize the stochastic process (4). In the case of necessity, higher moments as skewness and
kurtosis can be calculated.
As an example the case p ¼ 0:05; q ¼ �1; r ¼ 0:2; x0 ¼ 0; _x0 ¼ 1 is considered; the results are

plotted in Fig. 1.
This method can be applied only in the case of weak nonlinear systems for which the higher

powers of dx can be neglected. Strong nonlinear oscillators are considered in the following sections.
4. Computer simulation

For numerical integration of Eq. (4) the time interval t 2 ½0;T � is discretized so that
0pt1ot2o 	 	 	otkp1; here ti; i ¼ 1; 2; . . . ; k are discretizion points and k is the number of these
points. Making use of the Gaussian pseudorandom number generator, the variable x is discretized in
the same points; for intermediate instants the values of x are calculated by some appropriate
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Fig. 2. Duffing equation (4) for p ¼ 0:25; q ¼ �1; r ¼ 1; s ¼ 0:3; o0 ¼ 1; x0 ¼ 0; _x0 ¼ 1: In Figs. 2–11 subdiagrams

(a)–(d) have the following meaning: (a) time history and (b) phase diagram in the case of deterministic motion; (c) time

history and (d) standard deviation for the stochastic realizations.
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interpolation method. Now the function cos ot is continuous and for integrating (4) the
technique used in the case of deterministic systems can be applied. Of course, this is an approximation
of the actual stochastic process for which x is not differentiable and Itô-type equations hold. This
approach is supported by the fact that in reality the forcing term F ¼ s cos ot is continuous by
physical reasons.
Integration of Eq. (4) is repeated for N independent different sequences fxig; in this way N

realizations of the random process are obtained. From these data the mean, the variance and the
standard deviation are calculated with the aid of the formulae

E½xðtÞ� ¼
1

N

X
n

xðnÞðtÞ,

D½xðtÞ� ¼
1

N � 1

X
n

½xðnÞðtÞ � E½xðtÞ��2; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½xðtÞ�

p
. ð15Þ

Here n is the number of the nth realization.
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According to this scheme, computer simulations were carried out for a number of problems.
The fourth-order Runge–Kutta method with the adapted stepsize was used. It turned out that
already a small number of realizations ðNo10Þ enables estimation of various statistical features of
the solution.
Some results for a ¼ 0:2 are plotted in Figs. 2–10. To preserve clarity of these plots for N, a

small number N ¼ 5 was taken. Each plot in Figs. 2–10 consists of four parts. In parts (a) and (b)
the time history and phase diagram for deterministic motion a ¼ 0 are plotted. In part (c)
stochastic realizations are presented; in part (d) the standard deviation as a time function is
shown.
5. Duffing oscillator

For this oscillator the function g in Eq. (4) has the form

gðt; x; _xÞ ¼ p _x þ qx þ rx3. (16)
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The unforced equation s ¼ 0 has three fixed points x̄1 ¼ ȳ1 ¼ 0 and x̄2;3 ¼ 
ffiffiffiffiffiffiffiffiffiffiffi
�q=r

p
; ȳ2;3 ¼ 0 (the

notation y ¼ _x is introduced). The eigenvalues of these fixed points are [22]

l ¼ �
p

2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

4
� q � 3rx̄2

i

r
ði ¼ 1; 2; 3Þ. (17)

Next some special cases are considered.
(i) The oscillator with softening stiffness p40; qo0; r40: In the case of the fixed point x̄1 ¼ 0

it follows from Eq. (17) that l1o0; l240 and this is a saddle point. As to x̄2;3 then l1o0; l2o0;
if p2 þ 8q40 these are stable modes, in the opposite case p2 þ 8qo0 the eigenvalues are complex
numbers and the fixed points are stable focuses. So for this type oscillator always two stable fixed
points exist (two-well oscillator).
Computer simulation results for a typical case are presented in Fig. 2. Deterministic motion is

chaotic, stable focuses are at x̄ ¼ 1: By adding noise with a ¼ 0:2 the motion turns regular and
terminates in the focus x ¼ 1: The standard deviation s is maximal around t � 10 and with
increasing time approaches to zero.
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Fig. 6. Ueda oscillator; Eq. (1) for p ¼ 0:05; q ¼ 0; r ¼ 1; s ¼ 7:5; o0 ¼ 1; x0 ¼ 0; _x0 ¼ 1:
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Calculations with other parameter values indicated that the situation, where some of the
stochastic realizations are attracted by the focus x̄ ¼ 1 and other—by the other focus x̄ ¼ �1;
may exist.
Of interest also is the case p ¼ 0 (attractor without dissipation). The fixed point x̄1 ¼ 0 is

again a saddle point. As to the points x̄2;3 then l1;2 ¼ 
ffiffiffiffiffi
2q

p
; since qo0 both eigenvalues are

imaginary and these points are centres. It follows from here that in the case p ¼ 0 no attractor
exists.
Computer simulation results for p ¼ 0; q ¼ �1; r ¼ 1 are plotted in Fig. 3. It follows from this

figure that all stochastic realizations are different and do not converge to a unit solution. The
standard deviation s has an increasing tendency in time.
(ii) In the case of a hard type attractor p40; q40; r40 and only one fixed point x̄1 ¼ 0 exists.

It follows from Eq. (17) that this is a stable mode for p244q and a stable focus for p2o4q:
By analogy with Fig. 2 it can be expected that the stochastic realizations converge to
the fixed point x̄1 ¼ 0: This presumption is confirmed by Fig. 4 where computations were
carried out for p ¼ 0:09; q ¼ 1; r ¼ 0:3: The convergence of the realizations in Fig. 4(c) is
not so speedy as in Fig. 2. The fact that this is not a common rule is demonstrated in Fig. 5,
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where all stochastic realizations practically coincide and the standard deviation is very small
ðso5� 10�3Þ:
(iii) Assuming q ¼ 0 in Eq. (16) the Ueda equation is obtained. This equation has only one fixed

point x̄1 ¼ 0; according to Eq. (17) l1 ¼ 0; l2o0; consequently this is a degenerated fixed point.
Computer simulation results for p ¼ 0:05; q ¼ 0; r ¼ 1 are plotted in Fig. 6. No convergence
between different stochastic realizations is observed; the standard deviation s also differs
essentially from zero values. In view of the Hartman–Grobman theorem all this was to be
expected.
6. Van der Pol–Duffing oscillator

The differential equation of this oscillator can be written in the form

€x � að1� x2Þ _x þ qx þ rx3 ¼ s cos ot; ða40Þ. (18)
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For the conventional van der Pol equation r ¼ 0: Since the term rx3 is characteristic to the
Duffing equation, then Eq. (18) is called the van der Pol–Duffing equation.
The unforced equation s ¼ 0 has only one fixed point x̄ ¼ 0: Linearization of Eq. (18)

in the neighbourhood of the fixed point gives €x � a _x þ qx ¼ 0: This equation has the
eigenvalues

l1;2 ¼
a

2


ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4
� q

r
. (19)

If a244q; then l140; l240 and the fixed point is an unstable node; if a2o4q; the eigenvalues
are complex with a positive real part and the fixed point is unstable focus. Hence it follows that
Eq. (18) does not have any stable fixed point. But it is well known that the van der Pol equation
may have a limit cycle.
Computer simulation results for q ¼ 1; r ¼ 0; s ¼ 0:5; o ¼ 1 are plotted in Fig. 7. It can be

seen from Fig. 7b that a limit cycle exists. The effect of noise to the vibrations is very small
(Fig. 7c): all stochastic realizations practically coincide. A wholly different situation appears for
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a ¼ 0:05; q ¼ 1; o0 ¼ 0:38; r ¼ 1; s ¼ 0:16 (Fig. 8). Here no limit cycle exists; the stochastic
realizations diverge and s has a tendency to increase.
7. Vibrations of a pendulum

Consider a mathematical pendulum with mass m and length l. It is periodically driven by an
external force F ¼ G cos Ot; where G and O are amplitude and frequency of the excitation force.
The equation of motion is

ml
d2j
dt2

n

¼ �m
dj
dtn

� ðmg þ G cos OtnÞ sin j. (20)

Here j is the rotation angle, g-gravity constant, m-damping coefficient.
By the change of variables

tn ¼ t

ffiffiffi
l

g

s
; o ¼ O

ffiffiffi
l

g

s
; a ¼

G

mg
; b ¼

m
m

1ffiffiffiffi
lg

p , (21)
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Fig. 9. Driven pendulum (22) for a ¼ 2; b ¼ 1; o0 ¼ 0:5p; xð0Þ ¼ 0; yð0Þ ¼ 1:
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Eq. (20) can be written in the form

_x ¼ y; _y ¼ � sin xð1þ a cos otÞ � by. (22)

Here x ¼ j; dots denote differentiation with respect to nondimensional time t.
Fixed points of Eq. (22) are x̄ ¼ kp; ȳ ¼ 0; where k is an integer. It is shown [23] that if k is an

even number the fixed points are stable focuses and saddle points if k is odd.
Depending upon the initial conditions, the motion can be libration, rotation or consist of

librations and rotations. As before it is assumed that o is stochastic and defined by Eq. (5).
From computer simulations here are presented the results of the following two cases.
(i) The case a ¼ 2; b ¼ 1; o0 ¼ 0:5p; xð0Þ ¼ 0; yð0Þ ¼ 1 is plotted in Fig. 9. It follows from

Fig. 9a,b that the motion is a nonregular libration. All the stochastic realizations practically
coincide and already for t410 the motion is terminated at the fixed point x̄ ¼ 0: The standard
deviation is very small.
(ii) Here computations were carried out for a ¼ 8; b ¼ 1; o0 ¼ 0:5p; xð0Þ ¼ 2; yð0Þ ¼ 0; the

results are plotted in Fig. 10. The deterministic motion is irregular, it consists of successive
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Ü. Lepik, H. Hein / Journal of Sound and Vibration 288 (2005) 275–292 289
librations and rotations. The phase diagram has a rather complicated form. As to noisy motion,
then it is very simple: the vibrations die away very soon and the motion terminates in the focus
x̄ ¼ �2p:
8. Comparison of methods

In the present method, the parameters in system (6), (7) are chosen as follows

p ¼ 0:05; q ¼ �1; s ¼ 1;o ¼ 0:05; r ¼ 0:2;x0 ¼ 0; _x0 ¼ 1. (23)

The numerical results of computer simulation corresponding to Fig. 1 are shown in Fig. 11. The
comparison of expectations EðxÞ calculated by the present method and with the aid of computer
simulation for N ¼ 100 is presented in Fig. 12. The cases (a)–(c) correspond to the different values
of nonlinearity parameter r ¼ 0:1; 0:5; 1:0; respectively. Fig. 12 shows good agreement in the case
of small values of r. The comparison of expectations EðxÞ in the case of fixed nonlinearity ðr ¼ 0:2Þ
and different values of noise intensity is shown in Fig. 13. The corresponding lines almost
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coincide. For getting numerical estimates the expectations EðxÞ were integrated over t 2 ½0;T � and
differences for both methods were calculated. Percentage values of these differences for some
values of the parameters r and a are presented in Table 1.
9. Conclusions

Nonlinear vibrations with random frequency of excitation are investigated. Two methods
of solution are suggested. For weak nonlinearity the equations of motion are linearized.
Making use of stochastic averaging, the mean and the variance for the system variable are
calculated.
In the case of strong nonlinearity, computer simulation approach is used. By the Runge–Kutta

technique stochastic realizations of the system are computed. Divergence of these realizations is
estimated by standard deviation. Calculations which were carried out for the Duffing, Ueda, van
der Pol attractor and for a periodically driven pendulum, showed that the behaviour of the noisy
system essentially depends upon the type of the fixed points. If the fixed points are stable nodes or
focuses, then the motion, which for the deterministic system could be chaotic, by adding noise
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Table 1

Percentage values of the differences for integrated expectations in the case of the two methods

r a

0.1 0.2 0.3

0.1 0.124 0.167 0.453

0.3 0.588 1.208 0.889

0.5 1.671 2.281 2.087

0.7 2.207 0.949 1.278

1.0 4.683 2.189 0.614
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turns regular and terminates in some of the fixed points. If the system has a limit cycle, then the
phase portrait of the noisy motion converges to this curve.
In the case of unstable fixed points no convergence of the stochastic realizations is

observed.
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